Improving building energy efficiency with a network of sensing, learning and prediction agents
نویسندگان
چکیده
Nearly 20% of total energy consumption in the United States is accounted for in heating, ventilation, and air conditioning (HVAC) systems. Smart sensing and adaptive energy management agents can greatly decrease the energy usage of HVAC systems in many building applications, for example by enabling the operator to shut off HVAC to unoccupied rooms. We implement a multi-modal sensor agent that is non-intrusive and low-cost, combining information such as motion detection, CO2 reading, sound level, ambient light, and door state sensing. We show that in our live testbed at the USC campus, these sensor agents can be used to accurately estimate the number of occupants in each room using machine learning techniques, and that these techniques can also be applied to predict future occupancy by creating agent models of the occupants. These predictions will be used by control agents to enable the HVAC system increase its efficiency by continuously adapting to occupancy forecasts of each room.
منابع مشابه
Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملBuilding Energy Consumption Prediction: An Extreme Deep Learning Approach
Building energy consumption prediction plays an important role in improving the energy utilization rate through helping building managers to make better decisions. However, as a result of randomness and noisy disturbance, it is not an easy task to realize accurate prediction of the building energy consumption. In order to obtain better building energy consumption prediction accuracy, an extreme...
متن کاملIntegration of remote sensing and meteorological data to predict flooding time using deep learning algorithm
Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...
متن کاملTransparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density
Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific ...
متن کاملThe Efficiency of Hybrid BNN-DWT for Predicting the Construction and Demolition Waste Concrete Strength
The current study focuses on two main goals. First, with the use of construction and demolition (C&D) of building materials, a new aggregate was produced and it was utilized for green concrete production. The compressive strength test confirmed the good function of C&DW aggregate concrete. This concrete did not show significant differences with natural sand concrete. Second, Backpropagation neu...
متن کامل